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Abstract
We formulate an algebraic approach to quantum mechanics in fractional
dimensions in which the momentum and position operators P,Q satisfy the
R-deformed Heisenberg relations, which depend on an operator ν. We find
representations of P,Q in which the dimension d and angular momentum �

appear as parameters related to the eigenvalues of ν. We analyse the domain of
P and find conditions which ensure that P is Hermitian. We investigate plane
wave solutions and also free particle wavefunctions in fractional dimensions,
and show that as a consequence of wavefunction continuity � is quantized.
The representations of P,Q also lead to the corresponding representations
of paraboson operators which are used to solve the harmonic oscillator in
dimension d, both algebraically and analytically. We demonstrate that the
formalism extends also to time-dependent Hamiltonians by solving the time-
dependent harmonic oscillator in any dimension d > 0 using the method of
Lewis and Riesenfeld.

PACS numbers: 03.65.−w, 03.65.Ca, 03.65.Fd, 03.65.Ge

1. Introduction

The possibility that some phenomena in quantum physics may be accurately modelled in spaces
of fractional dimensions have been regularly discussed in the literature. The putative fractional
dimension may be viewed as an effective dimension of compactified higher dimensions or
as a manifestation of a non-trivial microscopic lattice structure of space (Schäfer and Müller
[1], see also [2]). In some applications, the fractional dimension appears as an explicit
parameter when the physical problem is formulated in d dimensions in such a way that d may
be extended to non-integer values, as occurs in Wilson’s study of quantum field theory models
in less than four dimensions [3], or in the approach to quantum mechanics by Stillinger
[4]. Other examples (taking a selection only) are the modelling of excitons in 2D or 3D
anisotropic solids (He [5]), in exciton–phonon interactions (Thilagam [6]), in the explanation
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of absorption structures of reduced dimensionality (Tanguy, Lefebvre, Mathieu and Elliot [7]),
and superconductors exhibiting a multilayered structure [8]. For a discussion of ‘mesoscale’
systems with characteristics of fractional dimensions, see [9].

In the approach by Stillinger [4], followed by He [5], the Schrödinger equation is solved
in dimension d, for central potentials V (r) only, by first writing the d-dimensional Laplacian
� in the form

� = ∂2

∂r2
+

(d − 1)

r

∂

∂r
+

1

r2
�0 (1)

where r is the radial coordinate and �0 is the Laplace operator on the unit sphere Sd−1 (see
Vilenkin [10], chapter IX). The Schrödinger equation splits into radial and angular differential
equations with the latter having solutions (the eigenfunctions of �0) that are determined by
the d-dimensional rotation group, and are independent of the form of the central potential.
Since �0 has eigenvalues −�(� + d − 2), where � is a non-negative integer, the Laplacian �

may be replaced by the following operator, the radial Laplacian,

�r = ∂2

∂r2
+

(d − 1)

r

∂

∂r
− �(� + d − 2)

r2
(2)

which acts only on radial wavefunctions and is defined now for non-integer values of d > 0.
One therefore solves the equation

[−�r + V (r)]ψ = Eψ (3)

for the wavefunctions ψ and energy levels E, and the corresponding Hilbert space consists of
radial functions ψ(r), φ(r) with an inner product defined by

(ψ, φ) = σd

∫ ∞

0
rd−1ψ(r)φ(r) dr.

The constant σd may be given by

σd = 2π
d
2

	
(

d
2

)
in order to correctly reproduce the volume of a radius-R ball in d dimensions:

Bd(R) = σd

∫ R

0
rd−1 dr = π

d
2 Rd

	
(
1 + d

2

) .

This formulation of the Schrödinger wave mechanics in fractional dimensions, discussed
in detail by Stillinger [4] and used also by other authors [11], allows the dimension d to
take non-integer values and underlies several of the fractional-dimensional models considered
above. Despite the disappearance of rotational symmetry (since we now ignore the angular
equations), the angular momentum � is nevertheless restricted to integer values which
follow from the required behaviour of the wavefunctions near the origin. This approach
to fractional-dimensional models is, however, restricted to Hamiltonians which have the form
H = −�r + V (r), with a central potential V (r), and neglects the degeneracy of the spectrum
due to the d-dimensional rotational symmetry of H. Hence, the wavefunctions do not depend,
for example, on the magnetic quantum number m. A formulation of the quantum mechanics
in fractional dimensions with more degrees of freedom is also possible but will be considered
elsewhere.

We analyse here the properties of several models using an algebraic approach to quantum
mechanics in fractional dimensions which reproduces the features of the dimensional extension
discussed above. Our approach, which is outlined in section 2, is restricted to one degree of
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freedom, and so the algebraic formulation involves a single momentum operator P, which may
be viewed as the square root of the d-dimensional radial Laplacian operator �r , and a position
operator Q which is represented by the radial coordinate r. As a consequence, the models we
consider allow only central potentials and the wavefunctions are independent of the magnetic
quantum number m, as before, although they do depend on the angular momentum �. In
section 3, we describe representations of the defining algebraic relations showing in particular
how the physical quantities d, the dimension, and �, the angular momentum, appear within
these representations. In section 4, we derive conditions under which the operators P,Q are
Hermitian.

The algebraic formulation has several advantages over the purely analytical approach,
for example, we can in principle consider Hamiltonians H(P,Q) with a general dependence
on P,Q, and we are also able to take full account of any symmetries and Lie algebraic
properties of the model, and hence explain any degeneracies of the energy levels. In this
paper, we restrict our attention to elementary models considering firstly eigenfunctions of
the momentum operator and free-particle wavefunctions (section 5). Then we analyse the
harmonic oscillator in d dimensions, reproducing firstly previously known results but then
generalizing them to include all values of angular momentum. In order to demonstrate that
our approach is valid for more general models, we also consider the time-dependent harmonic
oscillator in fractional dimensions, for which the frequency ω(t) is a given time-dependent
function, and find all wavefunctions using the method of Lewis and Riesenfeld (section 7).

Our algebraic approach also allows us to construct coherent and squeezed states (which
can be time dependent) in fractional dimensions and also to develop properties of Weyl-
ordered polynomials, which are useful as a means of constructing various quantum mechanical
operators [12].

2. Algebraic formulation

The algebraic formulation of fractional-dimensional quantum mechanics involves a third
operator R, the reflection operator, which together with P,Q, satisfies the relations of the
following R-deformed Heisenberg algebra:

[Q,P ] = i(1 + νR) {Q,R} = 0 = {P,R} R2 = 1 (4)

where ν is a real number although, as we show, should actually be regarded as an operator
which commutes with each of P,Q,R. We also have the hermiticity properties

Q∗ = Q P ∗ = P R∗ = R.

In addition to the usual invariance with respect to linear sl2 transformations, discussed further
in [12], these relations are also invariant under the discrete symmetry

R −→ −R ν −→ −ν. (5)

The relations (4) are not invariant under translations, Q → Q + λ for nonzero λ ∈ R,
which can be understood if Q is represented as a radial coordinate since translations act
directly on Cartesian, not radial, coordinates; this is consistent with our fractional-dimensional
interpretation. It implies also, for example, that models with potentials V (Q) have origin-
dependent properties that depend on the precise form of V .

The algebra (4) appeared in the work by Vasiliev [13] in 1989 but may be derived from
relations postulated by Wigner [14] in 1950, in which he considered the possibility that the
quantum mechanical commutation relations need not coincide with the canonical commutation
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relations, but are determined by the equations of motion. For the harmonic oscillator these
equations reduce, in our notation, to

[Q2, P ] = 2iQ [P 2,Q] = −2iP (6)

from which follows

{S,Q} = 0 = {S, P }
where S = i[Q,P ] + 1 = S∗. Hence (following [15]), S2 commutes with both Q and P and
may therefore be represented as a multiple of the identity operator. We now identify S with a
multiple of the reflection operator, S = −νR where ν ∈ R since both S,R are Hermitian, to
obtain (4).

The algebra (4) is also related to the paraquantization scheme introduced by Green
[16] in 1953, for if we define annihilation and creation operators a, a† in the usual way
according to

a = 1√
2
(Q + iP) a† = 1√

2
(Q − iP) (7)

then

[a, a†] = 1 + νR {a,R} = 0 = {a†, R} R2 = 1. (8)

These relations in turn imply that a, a† satisfy the trilinear relations of a paraboson algebra
with one degree of freedom:

[{a, a†}, a] = −2a [{a, a†}, a†] = 2a†. (9)

Paraboson operators and their representations have been investigated extensively, see for
example, [17–19] for a discussion of their properties.

We define the vacuum state |0〉 in the usual way to satisfy

a|0〉 = 0.

However, we may choose either an even vacuum |0〉e which satisfies R|0〉e = |0〉e or an odd
vacuum |0〉o with R |0〉o = −|0〉o, which are related by the symmetry (5). An example of
such vacua is given by the harmonic oscillator, where we encounter ground states labelled by
the angular momentum �, which are even or odd according as � is even or odd (see section 6).
From (8) it follows that aa†|0〉e = (ν + 1)|0〉e, which implies

ν + 1 = e〈0|aa†|0〉e = ‖a†|0〉e‖2 > 0.

Hence, in the space of states built on an even vacuum we are restricted to positive values only
of ν + 1, which is the paraboson order, see [17]. Similarly, for states built on the odd vacuum
we have −ν + 1 > 0. Although ν can vary continuously, see [19], its values are related to the
physical parameters d, � (see equations (13) and (15)) where � is quantized. Within any given
model, the parameter ν therefore is assigned a range of values and so should be regarded as
an operator which commutes with P,Q,R; alternatively we can regard equations (6) as the
defining relations of the algebra, with physical parameters such as d, � appearing within the
representations of Q,P .

The extended, or R-deformed, Heisenberg algebra (4) has been considered previously by
Vasiliev [13] in connection with higher spin algebras and quantization on the sphere, and also
appears in the explicit solution to the N-body Calogero problem [20, 21] for N = 2. The
solution for general N employs a generalized algebra (see also [22]) which is determined from
a covariant derivative which is similar for N = 2, but not identical, to that which we use in our
representation of the momentum operator, see equation (16). There has also been discussion of
the corresponding oscillator systems, which are related to the parabosons mentioned above, in
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[23] and the algebra has been interpreted in terms of fractional spin fields [24] and superfields
[25] by Plyushchay, who has also investigated the connection with paraboson, parafermion and
paragrassmann algebras (see also [26] for summaries). These papers do not, however, interpret
the R-deformed Heisenberg algebra in terms of a fractional dimension. Common to many
of these papers is the sl2 algebra which can be constructed from the R-deformed Heisenberg
algebra (4), which we also use in section 7 and which also appears in the construction of
Weyl-ordered polynomials [12].

3. Operator representations

The fractional-dimensional interpretation of relations (4) is a consequence of the following
representations of P,Q,R, which were found and investigated for dimension d = 1 by Yang
[15] in 1951, Ohnuki and Kamefuchi [17, 27] and Mukunda et al [28] and revisited in a
different form by Jing [29]. Similar but more general representations appear also as covariant
derivatives in the papers [21, 22] on the Calogero model, amongst others. These representations
of P,Q,R were more recently generalized and interpreted in terms of fractional dimensions
by Matos-Abiague [30–32], but we consider the following further generalization, in which P
depends on two parameters, ν and the dimension d.

Let P,Q,R act in a Hilbert space H of complex functions ψ(x) defined on R with an
inner product as defined below in equation (17). The reflection operator R acts according to

Rψ(x) = ψ(−x). (10)

The position and momentum operators are given by

Qψ(x) = xψ(x)

Pψ(x) =
[
−i

d

dx
+

iν

2
x−1(R − µ)

]
ψ(x)

(11)

which together with R satisfy relations (4) for any µ ∈ R. Our aim is to reproduce all the
terms in the operator �r given in equation (2), and so we compare �r with −P 2. We have

−P 2 = d2

dx2
+

µν

x

d

dx
+

1

x2
�′

0

from which we see, by comparison with equation (1), that we may identify the variable x with
the radial coordinate r (continued to negative values), and the dimension d according to

µν = d − 1. (12)

The operator �′
0 is given in a factorized form by

�′
0 = 1

4 (d − 2 − ν + R)(d − 2 + ν − R)

and has the eigenvalues
1
4 {(d − 1 − ν)(d − 3 + ν), (d − 3 − ν)(d − 1 + ν)}

for R → 1,−1, respectively. Each eigenvalue can be expressed in the form

−�(d + � − 2)

where � is the angular momentum, provided we identify

ν = d − 1 + 2� or ν = d − 1 + 2(� − 1) (13)

for R → 1,−1, respectively. Since ν takes different values according to the state on which
it acts, we regard ν as an operator which commutes with each of P,Q,R. Let ψ be an
eigenfunction of the angular momentum operator �, i.e.

�ψ = �ψ
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where � takes the values � = 0, 1, 2, 3, . . . . Then we set

ν = d − 2 + 2� + (−1)� (14)

and since � commutes with each of P,Q,R (recalling that Q is represented by the radial
coordinate x, which is rotationally invariant) it follows that ν also commutes with P,Q,R,
and takes the values shown in (13).

Alternatively, we could also identify ν according to

−ν = d − 1 + 2(� − 1) or − ν = d − 1 + 2� (15)

for R → 1,−1, respectively, which appears as a manifestation of the symmetry (5). This
symmetry is related to the invariance of �(d + � − 2) under

� −→ −� − d + 2.

Comparing now the operator −P 2 and its spectrum with that of �r in (2), we see by a suitable
choice of ν that −P 2 reproduces all the terms of �r including those involving the fractional
dimension d and the angular momentum eigenvalues �.

In previous work [15, 17, 27, 28] the parameter µ was set to zero which, as equation (12)
shows, implies d = 1. In the papers by Matos-Abiague [30–32] the choice µ = 1 was made in
order that the equation Pψ = 0 be satisfied for any constant function ψ ; this implies ν = d−1
which in turn restricts the angular momentum to values � = 0 or � = 1, as (13) shows. On the
other hand, when we compare −P 2 and �r as given in equation (2), we see that �rψ = 0 is
satisfied for constant ψ only if � = 0 or � + d − 2 = 0. Since this is an unnecessary restriction
on � we allow µ to take any real value, and then eliminate µ in favour of ν and the dimension d.

In summary, the momentum operator P is represented by the formal operator

P = −i
d

dx
+

iν

2
x−1R − i(d − 1)

2
x−1 (16)

and is parametrized by ν and d > 0. If we regard ν as an operator as shown in (14) then
we may identify −P 2 and �r as given in (2), i.e. P is the square root of the d-dimensional
radial Laplacian −�r . For the purpose of our development, we regard d and ν as independent
parameters keeping in mind the identification (13) or (15), and that the independent physical
parameters are d and �. If we choose ν = 0 then we have d = 1, as (13) shows, under the
assumption that � takes quantized values 0, 1, . . . . On the other hand, even for one-dimensional
models (d = 1) we may still retain a nonzero value for the parameter ν which is then directly
related to the angular momentum � as given in (13) and (15); this corresponds to the case
µ = 0 discussed previously in [15, 17, 28].

4. Domain of P

Let us now consider in detail the domain of the operator P given by (16), following [28], where
the case d = 1 is analysed (and where ν = 2α − 1). We decompose functions ψ into odd and
even components, the eigenfunctions of R, according to

ψ = ψo + ψe.

The inner product in H is given by

(ψ, φ) =
∫ ∞

−∞
|x|d−1ψ(x)φ(x) dx (17)

where d is the dimension parameter with d > 0, and is relevant not only for models defined
on the whole real line (which can be the case for d at or near 1), but also for models defined
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on the half-line where we regard x as a radial coordinate which is extended to negative values.
We restrict our considerations here to models in which the Hamiltonian H commutes with R,
in which case the eigenfunctions are either even or odd and are defined on R.

The inner product may be expressed in the form

(ψ, φ) = 2
∫ ∞

0
xd−1[ψe(x)φe(x) + ψo(x)φo(x)] dx.

Elements ψ of H must satisfy

‖ψ‖2 =
∫ ∞

−∞
|x|d−1|ψ(x)|2 dx

= 2
∫ ∞

0
xd−1[|ψe(x)|2 + |ψo(x)|2] dx < ∞ (18)

and therefore also ‖Pψ‖2 < ∞. In particular, we require both ‖ψe‖2 < ∞ and ‖ψo‖2 < ∞.
The action of P on functions ψ , which are assumed to be at least once differentiable for

x > 0, is given by

(Pψ)e(x) = −ix
1
2 (−ν−d+1) d

dx

[
x− 1

2 (−ν−d+1)ψo(x)
]

(Pψ)o(x) = −ix
1
2 (ν−d+1) d

dx

[
x− 1

2 (ν−d+1)ψe(x)
]
.

(19)

We observe from these expressions that the momentum operator, which we denote by Pd

for general d, is related to the momentum operator P1 for d = 1 by a formal similarity
transformation T = x

1
2 (d−1):

Pd = T −1P1T

and similarly for Q,R; the corresponding wavefunctions ψd,ψ1 are related according to
ψd = T −1ψ1. One effect of this transformation is to insert the weight factor xd−1 in the inner
product as shown in (18). The observation that Pd and P1 are related by a formal similarity
transformation is of mathematical convenience only, since in physical applications ν depends
on d as equation (13) shows.

As a consequence of (19), we require ψe, ψo to behave near x = 0 such that∫
0
x−ν

∣∣∣∣ d

dx

[
x− 1

2 (−ν−d+1)ψo(x)
]∣∣∣∣

2

dx < ∞
∫

0
xν

∣∣∣∣ d

dx

[
x− 1

2 (ν−d+1)ψe(x)
]∣∣∣∣

2

dx < ∞.

These conditions imply that near x = 0

ψe(x) = aex
1
2 (ν−d+1) + O

(
x

1
2 (2−d)+ε1

)
ψo(x) = aox

1
2 (−ν−d+1) + O

(
x

1
2 (2−d)+ε2

) (20)

for constants ae, ao and ε1, ε2 > 0 (the notation in the second term of each right-hand side
means that we allow behaviour xλ where λ > 1

2 (2 − d)). For ν > −1 these conditions are
consistent with the requirement (18) except for ψo for the case ν � 1, for which we demand
ao = 0.

The operators R,Q are Hermitian in the Hilbert space H and for P we find

(ψ, Pφ) − (Pψ, φ) = −2i[xd−1(ψe(x)φo(x) + ψo(x)φe(x))]∞0 .
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For 0 < d < 1 the boundary term at ∞ is zero provided φ,ψ are bounded at ∞. For d � 1
the boundary term at ∞ is also zero provided ψ, φ vanish at ∞ sufficiently quickly.

In order to consider the boundary terms at x = 0 we express each of ψ, φ in the form
shown in equations (20), for small x:

ψe(x) ∼ aex
1
2 (ν−d+1) + a′

ex
1
2 (2−d)+ε1

ψo(x) ∼ aox
1
2 (−ν−d+1) + a′

ox
1
2 (2−d)+ε2

φe(x) ∼ bex
1
2 (ν−d+1) + b′

ex
1
2 (2−d)+ε3

φo(x) ∼ box
1
2 (−ν−d+1) + b′

ox
1
2 (2−d)+ε4

for constants ε1, ε2, ε3, ε4 > 0. Then

(ψ, Pφ) − (Pψ, φ) = 2i
[
a′

ebox
ε1+ 1

2 (1−ν) + aob
′
ex

ε3+ 1
2 (1−ν) + aobe + aebo

]
x=0

= 2i

{
0 if ν � 1
aobe + aebo if |ν| < 1

where we used ao = bo = 0 for ν � 1.
We deduce that for ν � 1 there is only one way the domain of P in (16) can be chosen

which leads to a unique self-adjoint operator: the functions ψ(x) in this domain satisfy
‖ψ‖ < ∞, are once differentiable for x > 0, are bounded or vanish sufficiently quickly at ∞
as discussed above, and near x = 0 the even and odd components ψe, ψo behave as

ψe(x) ∼ aex
1
2 (ν−d+1) + a′

ex
1
2 (2−d)+ε1

ψo(x) ∼ a′
ox

1
2 (2−d)+ε2

(21)

(ε1, ε2 > 0) where for ν > 1 the first term in ψe may be included with the second term. For
|ν| < 1 the possible domains Ms in H are parametrized by s ∈ R, where s is determined by
the behaviour of ψ near x = 0:

ψe(x) ∼ aex
1
2 (ν−d+1) + a′

ex
1
2 (2−d)+ε1

ψo(x) ∼ isaex
1
2 (−ν−d+1) + a′

ox
1
2 (2−d)+ε2

(22)

i.e. we have ao = isae. Hence, for all values ν > −1 we have (ψ, Pφ) = (Pψ, φ) for
functions ψ, φ in the domain of P. In [28], the case is also discussed where R acts according to
Rψ(x) = −ψ(−x); this case may be obtained by means of the symmetry (5) which preserves
the inequality |ν| < 1.

So far we have considered only the integrability conditions which are necessary for P to be
Hermitian. In actual models, we also require the wavefunctions ψ(x) to satisfy Schrödinger’s
equation, which means that ψ(x) must be twice differentiable and hence continuous at the
origin. Since ψe(x) is even, the small x behaviour shown in (20) implies the quantization
condition

ν − d + 1 = 4m

where m is a non-negative integer. This is consistent with conditions (13) where either
ν − d + 1 = 2� for even values of �, or ν − d + 1 = 2(� − 1) for odd values of �. We verify
these quantization conditions explicitly in the models considered below.

5. Wave solutions in d dimensions and free particles

The eigenfunctions of P reduce to plane waves for d = 1 and ν = 0, and in three dimensions
to the well-known spherical waves; in general fractional dimensions, the solutions are Bessel
functions which exist for any d > 0 but with a quantization condition on �.
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We solve therefore the equations

(Pψ)e(x) = kψe(x) (Pψ)o(x) = kψo(x)

where k ∈ R is the wavenumber and where the left-hand side is given explicitly in
equations (19). Since R does not commute with P the eigenfunctions are neither even nor odd.
It is convenient to denote u(x) = x− 1

2 (ν−d+1)ψe(x), then we find

u′′ +
νu′

x
+ k2u = 0.

With the help of standard formulae, see for example [33], formula (9.1.52), we obtain the
general solution as a linear combination of two independent Bessel functions, in the form

ψe(x) = ax
1
2 (2−d)J 1

2 (1−ν)(kx) + bx
1
2 (2−d)Y 1

2 (1−ν)(kx)

for arbitrary constants a, b. These constants satisfy two linear relations which are determined
from ψe(x) = ψe(−x). We use the analytic continuation formulae for Bessel functions (see
[33], formulae (9.1.35) and (9.1.36)) to obtain the following two equations:

a = a e
iπ
2 (3−d−ν) + 2ib e

iπ
2 (2−d) cos

[
π
2 (1 − ν)

]
b = b e

iπ
2 (1−d+ν).

We choose b �= 0 which implies that we must impose the quantization condition

ν − d + 1 = 4m (23)

for some non-negative integer m, which is consistent with equation (13) provided either � = 2m

for even eigenfunctions of R, or � = 2m+1 for odd eigenfunctions of R. The alternative choice
b = 0 is consistent with (15) and corresponds to the convention Rψ(x) = −ψ(−x) rather
than (10). We allow only non-negative values of m in order that ψe(x) be continuous at the
origin, as follows from the small x behaviour of ψe(x) (given in equations (26)).

Hence, we find

a cos
πν

2
+ b sin

πν

2
= 0

which enables us to express ψe(x) in the form

ψe(x) = cx
1
2 (2−d)J 1

2 (−1+ν)(kx) (24)

where c is any constant. We determine ψo(x) from the equation

kψo(x) = −ix
1
2 (ν−d+1) d

dx

[
x− 1

2 (ν−d+1)ψe(x)
]

to obtain

ψo(x) = icx
1
2 (2−d)J 1

2 (1+ν)(kx) (25)

which is an odd function, as again follows with the help of (23).
For small x we have

ψe(x) ∼ aex
1
2 (ν−d+1) + a′

ex
1
2 (ν−d+3)

ψo(x) ∼ a′
ox

1
2 (ν−d+3)

(26)

for constants ae, a
′
e, a

′
o which is consistent with the requirements shown in equations (21) and

(22) for all ν > −1. We find that the domain of P is M0 corresponding to s = 0 in (22).
The eigenfunctions of P are therefore

ψ(k, x) = x
1
2 (2−d)

[
J 1

2 (−1+ν)(kx) + iJ 1
2 (1+ν)(kx)

]
(27)
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which reduces to the expression obtained in [28] for d = 1 (see equation (3.20a), where
α = 1

2 (ν + 1)). Since the authors in [28] consider integrability only of the wavefunctions on
the half-line x > 0, and do not impose differentiability and hence continuity at the origin, they
do not obtain the quantization condition (23), which for d = 1 reads ν = 2α − 1 = 4m. The
result (27) also reduces to the wavefunctions found in [31] (see equation (31)) for a free particle
where ν = d − 1, corresponding to m = 0 in (23). For d = 1, ν = 0 the eigenfunctions of P
reduce to the usual plane waves: ψ(k, x) ∝ eikx .

The free-particle Hamiltonian H = P 2 has wavefunctions which are either even or odd
and are given by (24) and (25), respectively. In terms of the angular momentum �, we have
(substituting 2m = � for even eigenfunctions and 2m = � − 1 for odd eigenfunctions)

ψe,�(k, x) = cx
1
2 (2−d)J�−1+ d

2
(kx) � = 0, 2, 4, . . .

ψo,�(k, x) = icx
1
2 (2−d)J�−1+ d

2
(kx) � = 1, 3, 5, . . .

which we combine into the single formula for all wavefunctions (up to normalization):

ψ�(k, x) = x
1
2 (2−d)J�−1+ d

2
(kx) � = 0, 1, 2, 3, . . .

which is even or odd according as � is even or odd. As expected, these are precisely the
eigenfunctions found by Stillinger [4]. For d = 3 these functions are, of course, proportional
to the spherical Bessel functions j�(kx) which are eigenfunctions of the operator �r for d = 3
shown in equation (2), where x denotes the radial coordinate r.

6. Harmonic oscillator in d dimensions

The harmonic oscillator and the associated paraboson algebra have been well-studied from
an algebraic point of view in [18, 19, 34] amongst others, although not with a fractional-
dimensional interpretation. In later work by Jing [29] (in which the paraboson order is
denoted by p = ν + 1), the representation (11) of the momentum operator is used but with
ν = d − 1, which restricts the possible angular momentum values to � = 0, 1 as explained
above; again, there is no interpretation in terms of fractional dimensions. The paper [32] is
also restricted to � = 0, 1. On the other hand, Stillinger [4] derives the harmonic oscillator
eigenfunctions and eigenvalues in fractional dimensions directly by solving (3). We now
show that these approaches are all related through the algebras (4) and (8) and the momentum
representation (16).

6.1. Algebraic approach

The Hamiltonian for the harmonic oscillator is

H = 1
2 (P 2 + Q2) = 1

2 (aa† + a†a) (28)

where P,Q satisfy (4) and the paraboson operators a, a† satisfy relations (8). Since H
commutes with R, the eigenstates are either even or odd, and are generated by allowing the
creation operator a† to act on the vacuum, which carries the label ν and may be even or odd.

Considering firstly the case where the vacuum |0〉e is even, the eigenstates are

|n〉 = N
− 1

2
n (a†)n|0〉e (29)

where the normalization is given by

Nn = e〈0|an(a†)n|0〉e =
n∏

k=1

[
k +

ν

2
(1 − (−1)k

]
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which can be derived with the help of the commutator

[a, (a†)n] =
[
n +

ν

2
(1 − (−1)n)R

]
(a†)n−1 n ∈ N.

Since H satisfies [H, a†] = a† as follows from (9), H has the eigenvalues

En = n + 1
2 (ν + 1) n = 0, 1, . . . (30)

as is well known (see, for example, [18, 28], where α = 1
2 (ν +1) > 0 is the lowest eigenvalue).

The eigenstates built on the odd vacuum |0〉o are proportional to (a†)n|0〉o and in this case H
has eigenvalues n + 1

2 (−ν + 1), as follows by application of the symmetry (5).
An elegant formulation of the representations of the parabose system in terms of the Lie

algebra sl2(R) is given in [28], where sl2(R) is generated by the following operators which
are quadratic in the paraboson operators (see also Perelomov [35], chapter 5):

L0 = 1
4 (aa† + a†a) L+ = 1

2 (a†)2 L− = 1
2a2. (31)

The paraboson representations are carried by a direct sum of two sl2(R) representations
Dβ, 0 < β < ∞, where β = 1

2α or 1
2 (α + 1) and α = 1

2 (ν + 1).

6.2. Explicit wavefunctions

We may relate these algebraic results to properties of wavefunctions in fractional dimensions
by representing P,Q,R as shown in equations (16), (11) and (10), respectively. Let us denote
the wavefunctions by ψn,�(x). Then these eigenfunctions are either even or odd and satisfy
the second-order differential equation (3) with V (r) = r2, that is

1
2 (P 2 + Q2)ψn,�(x) = 1

2 (−�r + x2)ψn,�(x) = εn(�)ψn,�(x) (32)

(identifying the coordinate x with r), which has the following (unnormalized) solutions already
given in [4]:

ψn,�(x) = L
(�−1+ d

2 )
n (x2)x� e− 1

2 x2
. (33)

Here L denotes generalized Laguerre polynomials (see [33], chapter 22, for properties); in
particular, we have Lα

0 (x) = 1 for any values of α, x. The angular momentum � takes the
values � = 0, 1, 2, . . . and so ψn,�(x) is even or odd according as � is even or odd. The
eigenvalues are given by

εn(�) = 2n + � +
d

2
(34)

where n is a non-negative integer. The wavefunctions decrease to zero as |x| → ∞ like e− 1
2 x2

and so are normalizable with respect to the inner product (17).

6.3. Excited states

Now let us derive these same eigenfunctions by following the algebraic construction given
above in terms of paraboson operators, and also explain why the energy levels in equation (34)
depend on 2n, whereas in the algebraic approach they depend on n (see (30)). The ground
(vacuum) state |0〉 = φ0(x) satisfies the equation a|0〉 = 0, which becomes the differential
equation

(Q + iP)φ0(x) = 0

and has the even and odd solutions, respectively,

φ0
e (x) = x

1
2 (ν−d+1) e− 1

2 x2
φ0

o(x) = x
1
2 (−ν−d+1) e− 1

2 x2
. (35)
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These solutions accord with the necessary small x behaviour of wavefunctions, required for
integrability, as shown in equations (20). Since φ0

e (x) = φ0
e (−x) we must have ν−d +1 = 4m

for some non-negative integer m, as also found for the free-particle Hamiltonian, see (23). For
the even wavefunctions, we therefore identify � = 2m, or substitute ν = d − 1 + 2� directly
from (13) or (14), and so φ0

e (x) = x� e− 1
2 x2

where � = 0, 2, 4, . . . . The corresponding energy
is, according to equation (30),

E0 = 1
2 (ν + 1) = � +

d

2
.

In the case of the odd ground states, which satisfy Rφ0
o(x) = −φ0

o(x), we identify
−ν = d − 1 + 2� as shown in (15) to obtain φ0

o(x) = x� e− 1
2 x2

, where now � = 1, 3, 5, . . . for
odd functions. The energy is 1

2 (−ν + 1) = � + d
2 . In summary, the possible ground states are

parametrized by � = 0, 1, 2, . . . , and are given by

φ0,�(x) = x� e− 1
2 x2

(36)

and have energy � + d
2 , in agreement with the expressions (33) and (34) for n = 0.

We now create the excited states by applying the creation operator a† to the ground state
|0〉 = φ0,�0(x) = x�0 e− 1

2 x2
, which has angular momentum �0. In applying a† = 1√

2
(Q − iP)

we regard ν as the operator given by (14), where the operator � acts on the ground state
according to �φ0,�0 = �0φ

0,�0 . Since � commutes with P,Q,R we also have �φ = �0φ

for all states φ constructed from the ground state, i.e. if φ0,�0 carries the angular momentum
�0, then all excited states built on this vacuum also carry the eigenvalue �0 of �. However,
�0 is not necessarily the total angular momentum � which appears in the operator �r given
in equation (2), as is clear from the following example. Let us choose �0 to be even, then
ν = d − 1 + 2�0 and the first excited state φ1(x), which is an odd function, is given by

φ1(x) = a†φ0,�0 = 1√
2
(Q − iP)φ0,�0 ∝ x�0+1 e− 1

2 x2

and according to equation (30) has energy E1 = 1 + 1
2 (ν + 1) = �0 + 1 + d

2 . By comparison
with the solutions (33) and (34) we see that φ1 has the total angular momentum � = �0 + 1
with a corresponding energy ε0(�) = � + d

2 . We also observe from (36) that φ1(x), which is
the first excited state built on the even ground state with the even angular momentum �0, is
identical to the odd ground state φ0,�0+1(x) with the odd angular momentum �0 + 1.

The second excited state φ2(x) = (a†)2φ0,�0(x), which is even, is proportional to the
wavefunction ψ1,�0(x) given in (33) and so has the total angular momentum � = �0. This state
has energy

E2 = 2 + 1
2 (ν + 1) = 2 + �0 +

d

2
= ε1(�0).

In general, we have for the nth excited state,

φn(x) = (a†)nφ0,�0 =
{

cnψn
2 ,�0(x) n even

c′
nψn−1

2 ,�0+1(x) n odd
(37)

where cn, c
′
n are normalization constants. The corresponding energy is

En = n + 1
2 (ν + 1) = n + �0 +

d

2
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which agrees with the formula (34) for εn(�) provided we identify � = �0 for even n and
� = �0 + 1 for odd n. Specifically,

E2m = 2m + �0 +
d

2
= εm(�0)

E2m+1 = 2m + 1 + �0 +
d

2
= εm(�0 + 1)

for integers m.
We can also choose an odd ground state by taking �0 to be odd, and then generate the

excited states in the same way as before, except that now we choose −ν = d − 1 + 2�0.
The product νR takes the same values as before and hence we generate the same excited
states (37).

It is helpful to use the following formula for a† acting on even functions φe(x):

a†φe(x) = − 1√
2

e
1
2 x2

x�0
d

dx

[
e− 1

2 x2
x−�0φe(x)

]
and also on odd functions φo(x):

a†φo(x) = − 1√
2

e
1
2 x2

x−�0−d+1 d

dx

[
e− 1

2 x2
x�0+d−1φo(x)

]
.

These formulae lead to alternative expressions for the wavefunctions ψn,�(x).
We observe that it is possible to generate either only even, or only odd, states directly by

repeated application of (a†)2 to the even or odd ground state. For example, all even states are
given by

φn
e (x) = ψn,�(x) = (a†)2nφ0,�(x)

where � is even, and similarly if � is odd. We also point out that it is possible to generate all
ground states from the lowest energy vacuum, namely the state |0〉 = φ0,0(x) = e− 1

2 x2
, by

application of a† in which ν is regarded as the operator

ν = (−1)�(d − 1 + 2�)

where � now is the full angular momentum operator or, equivalently, the paraboson number
operator. Then a†|0〉 ∝ x e− 1

2 x2
and generally |�〉 = (a†)�|0〉 ∝ x� e− 1

2 x2
.

For d = 1 the results described in this section reduce to the usual results for the harmonic
oscillator provided we choose �0 = 0 in (37), which implies ν = 0. In this case the generalized
Laguerre polynomials in (33) reduce to the form Lα

n(x2) where α = ± 1
2 , and are related to the

even and odd Hermite polynomials (see [33], formulae (22.5.38)–(22.5.41)). Our results show
that we may also quantize the harmonic oscillator for d = 1 by choosing nonzero values of
|ν| = 2�0; this is the case analysed in [28] from the paraboson viewpoint. The wavefunctions
(37) have also been derived in [31] for general d for the special case �0 = 0. These results
may be extended to the singular oscillator considered by Perelomov [35] (chapter 18) using
algebraic methods.

7. Time-dependent harmonic oscillator in d dimensions

The approach to quantum mechanics in fractional dimensions described above, which proceeds
from the algebra (4) and uses the representations of P,Q,R in equations (16), (11) and (10),
respectively, reproduces previously known results but may also be applied to problems not yet
studied in fractional dimensions, including those which are amenable to an algebraic approach.
One such example is the construction of coherent states in fractional dimensions, which may
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be performed using the paraboson operators defined in equation (7) (and considered in [34] for
example) but interpreted using the fractional-dimensional momentum operator (16). A second
example which we now consider is the solution of time-dependent quantum mechanical models
in fractional dimensions. Such models have been extensively investigated in one dimension,
using generally the Lewis–Riesenfeld method, see, for example, [36–43], and have various
applications such as to ion traps, see [44].

We outline the solution to the time-dependent harmonic oscillator in fractional dimensions,
restricting our analysis for simplicity to a constant mass term, although the generalization to
a variable mass and the addition of further terms in the Hamiltonian are each possible, due
to the Lie algebraic properties of operators quadratric in P,Q. Our aim here is merely to
demonstrate that the method of solution using our approach extends to fractional dimensions.

The time-dependent harmonic oscillator in dimension d is defined by the Hamiltonian

H(t) = 1
2 (P 2 + ω(t)2Q2) (38)

where the frequency ω(t) is a given function which depends explicitly on time, and where
the operators P,Q satisfy the algebraic relations (4). Since −P 2 is identified with the
radial Laplacian operator �r by means of the representation (16) our analysis applies to any
dimension d > 0.

7.1. Construction of the invariant I

In order to solve the time-dependent Schrödinger equation[
i
∂

∂t
− H(t)

]
ψ(x, t) = 0

we follow the method of Lewis and Riesenfeld [36, 37], and look for a nontrivial Hermitian
operator I (t) which satisfies

dI

dt
= ∂I

∂t
+ i[H, I ] = 0. (39)

Such an invariant, if it exists, has time-independent eigenvalues λ [36]. After determining the
eigenfunctions φλ(x, t) of I the method proceeds by constructing solutions of the Schrödinger
equation in the form ψλ(x, t) = eiαλ(t)φλ(x, t) where the phase αλ(t) is given by

dαλ

dt
=

(
φλ,

(
i
∂

∂t
− H

)
φλ

)
. (40)

The general solution of the time-dependent Schrödinger equation is then given by the linear
superposition

ψ(x, t) =
∑

λ

cλψλ(x, t) =
∑

λ

cλ eiαλ(t)φλ(x, t)

for constants cλ.
The first step, therefore, is to solve (39) for I (t) which can be achieved by first expanding

I (t) in terms of the following operators:

J0 = i

4
(PQ + QP) J+ = − 1

2Q2 J− = − 1
2P 2.

As a result of equations (6), these operators generate the Lie algebra sl2(C):

[J0, J±] = ±J± [J+, J−] = 2J0.
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(It is more convenient to choose the generators in this form rather than the linear combinations
given in (31) in terms of paraboson operators, which generate sl2(R).) In terms of the
representations (16) and (11) of P,Q we have

J− = 1

2

[
d2

dx2
+

(d − 1)

x

d

dx
− �(� + d − 2)

x2

]

J+ = −1

2
x2

J0 = 1

2

[
x

d

dx
+

d

2

] (41)

where we have replaced ν and R by their eigenvalues as explained in section 3.
The Hamiltonian and I (t) may each be expressed as a linear combination of {J0, J±}

with time-dependent coefficients, and the commutator [H, I ] is consequently also a linear
combination of {J0, J±}. Hence, equation (39) implies that these coefficients satisfy a set of
coupled ordinary differential equations, which may be solved to obtain I (t) in the following
form [36]:

I = −ρ2J− − (ρ−2 + ρ̇2)J+ + 2iρρ̇J0 (42)

where ρ(t) is a solution of

ρ̈ + ω(t)2ρ = 1

ρ3
. (43)

For the time-independent case (constant ω) the solution is ρ2 = ω−1. Solutions of the nonlinear
equation (43) can be obtained, following [45], by solving the following classical equation of
motion for the time-dependent harmonic oscillator:

f̈ + ω(t)2f = 0.

The Wronskian W(t) = f1ḟ 2 − ḟ 1f2 of any two linearly independent solutions f1, f2 of this
linear equation is a nonzero constant W = W(t), since Ẇ = 0. Then we determine ρ from
the equation

ρ2 = c1f
2
1 + c2f1f2 + c3f

2
2

where c1, c2, c3 are any constants satisfying

W 2
(
4c1c3 − c2

2

) = 4.

7.2. Eigenfunctions of I

The second step is to determine the eigenvalues and eigenfunctions of I, which may be achieved
algebraically by defining the time-dependent creation and annihilation operators

a† = 1√
2
[(ρ−1 + iρ̇)Q − iρP ]

a = 1√
2
[(ρ−1 − iρ̇)Q + iρP ]

(44)

from which follows

I = 1
2 (a†a + aa†)

and

[a, a†] = i[P,Q] = 1 + νR {a,R} = 0 = {a†, R}.
We find that a, a† satisfy the same relations (8) as for the time-independent case, and therefore
are paraboson operators. The invariant I has the same expression (28) as the Hamiltonian for



6196 M A Lohe and A Thilagam

the time-independent harmonic oscillator and hence has eigenvalues as shown in (30) for the
states (29) constructed on an even vacuum. For the case of an odd vacuum the eigenstates
have the eigenvalues n + 1

2 (−ν + 1) where n is a non-negative integer.
We deduce that the Lewis–Riesenfeld method generalizes to the fractional-dimensional

case without difficulty, essentially because the commutation relations (6) are maintained in
fractional dimensions. As a further consequence of these relations the time evolution of
P(t),Q(t) is unchanged from the one-dimensional case. We have

Ṗ = i[H,P ] = −ω(t)2Q Q̇ = i[H,Q] = P

and for the creation and annihilation operators we find (following [45])

ȧ† = iρ(t)−2a† ȧ = −iρ(t)−2a.

The solutions are

a†(t) = ei�(t)a
†
0 a(t) = e−i�(t)a0

where a
†
0, a0 denote the values of a†, a, respectively, at some initial time t = t0, and where

�(t) =
∫

dt

ρ(t)2
. (45)

The time evolution of P(t),Q(t) then follows using equations (44). The invariant I takes the
manifestly time-independent form

I = 1
2

(
a
†
0a0 + a0a

†
0

)
.

In order to determine the explicit dependence on the dimension d of the eigenfunctions
φ of I we solve the differential equation Iφλ = λφλ where I is given by (42) with J±, J0

represented by equations (41). The possible ground states |0, t〉 = φ0(x, t) are determined by
solving a|0, t〉 = 0, which requires us to solve

((ρ−1 − iρ̇)Q + iρP )φ0 = 0.

The solutions, which generalize the ground states (36) for the time-independent case, are (up
to a time-dependent normalization):

φ0,�(x, t) = x� exp

(
− x2

2ρ2

)
exp

(
i
ρ̇x2

2ρ

)
(46)

where � is the angular momentum taking values � = 0, 1, 2, . . . as before.
Instead of calculating the general eigenstates (a†)n|0, t〉 of I by direct application of the

creation operator to the vacuum, let us perform a unitary transformation on I which enables
us to use the previously calculated eigenfunctions (33) of the time-independent harmonic
oscillator, and hence determine the complete set of wavefunctions of I. Following [41], and
after inspection of the form of the ground states (46), we define the unitary operator

U = exp

(
iρ̇

ρ
J+

)
= exp

(
− iρ̇

2ρ
Q2

)
.

With the help of the formulae

UJ0U
−1 = J0 − iαJ+ UJ−U−1 = J− + 2iαJ0 + α2J+

where α = ρ̇/ρ, we find

I ′ = UIU−1 = 1
2

(
ρ2P 2 +

1

ρ2
Q2

)
= 1

2 (P ′2 + Q′2)

where in the last step we defined P ′,Q′ from P,Q as given in equations (16) and (11) by
rescaling x according x = ρx ′.
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The eigenfunctions φ′ of I ′ are therefore given by equation (33) with x replaced by
x ′ = x/ρ and hence the eigenfunctions φ = U−1φ′ of I are, up to normalization, as follows:

φn,�(x, t) = L
(�−1+ d

2 )
n

(
x2

ρ2

)
x�ρ

− 1
2 (d+2�) exp

(
− x2

2ρ2

)
exp

(
i
ρ̇x2

2ρ

)
(47)

where, as before, � is the angular momentum, L denotes generalized Laguerre polynomials
and the non-negative integer n denotes the energy levels. The ground states (46) correspond to
the value n = 0. We have included the factor ρ− 1

2 (d+2�) in (47) in order that the normalization
be time independent. This follows since we have

‖φn,�‖2 =
∫ ∞

−∞
|x|d−1|φn,�(x, t)|2 dx

in which we change the integration variable by substituting x = ρx ′. We observe that
|φn,�(ρx ′, t)|2 depends on t only through the factor ρ−d which is in turn cancelled by ρd

arising from the change of variable in the measure |x|d−1 dx, and hence ‖φn,�‖ is independent
of t.

The eigenvalues λn = εn(�) of I are given by (34), namely

εn(�) = 2n + � +
d

2
.

This is consistent with the energy levels En = n + 1
2 (ν + 1) found algebraically, as discussed

for the time-independent harmonic oscillator in section 6.
The calculation of the phases αn(t) as shown in (40) proceeds as in the one-dimensional

case (see, for example, [36, 41]); we find α̇n(t) = −(
2n + � + d

2

)/
ρ(t)2 and hence

αn(t) = −
(

2n + � +
d

2

)
�(t)

where �(t) is defined in (45). Finally, we obtain the following solutions of the time-dependent
harmonic oscillator, as defined by the Hamiltonian (38):

ψn,�(x, t) = cnL
(�−1+ d

2 )
n

(
x2

ρ2

)
x�ρ− 1

2 (d+2�)

× exp

(
− x2

2ρ2

)
exp

(
i
ρ̇x2

2ρ

)
exp

[
−i

(
2n + � +

d

2

)
�(t)

]
. (48)

The normalization constant cn of these wavefunctions depends on d and �, but is independent
of time, by construction. For constant ρ2 = ω−1 these wavefunctions reduce to the
previous expressions shown in equation (33), with the time evolution determined by the
factor exp(−iω2εn(�)t). In general, the wavefunctions (48) are well defined for any d > 0
and any � = 0, 1, 2, . . . .

8. Conclusions

We have developed an approach to quantum mechanics in fractional dimensions which is
algebraic to the extent that it takes relations (4), which depend on ν, as a starting point, but
in which the fundamental physical parameters d and � appear within the representation of P.
We have shown that the algebraic properties of the system extend to properties of creation
and annihilation operators which we may view as paraboson operators with one degree of
freedom. We have analysed the domain of P and determined conditions for which P is
Hermitian, and then found the eigenfunctions of P and consequently also the free-particle
wavefunctions. We have demonstrated that the quantization of the angular momentum �
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follows from the required continuity of the wavefunctions at the origin. We have solved the
standard harmonic oscillator in the dimension d (reproducing results found by Stillinger and
others for special cases), but have also included general values of the angular momentum
�. We have demonstrated the consistency of the algebraic and analytic approaches which
are fundamental to the construction of coherent and squeezed states. Finally, we have used
our approach to solve the time-dependent harmonic oscillator in fractional dimensions using
the method of Lewis and Riesenfeld. We have calculated the explicit wavefunctions for any
dimension d and for any (integer) values of � which, to our knowledge, have not previously
been derived. Our approach is applicable to other models and further generalizations also, and
work on this is in progress.
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